Bi-Di SFP 1.25Gb/s Optical Transceiver

Bi-Di SFP 1.25Gb/s Optical Transceiver

Features:

- Single Mode bi-directional Transmission
- SFP Multi-source Package with LC Receptacle
- Standard $1.25 \mathrm{~Gb} / \mathrm{s}$ Data Links
- Hot-Pluggable Capability
- Single +3.3V Power Supply
- Isolation $>30 \mathrm{~dB}$, Cross Talk $<-45 \mathrm{~dB}$
- Compliant with Specifications for IEEE802.3Z
- Compliant with Bellcore TA-NWT-000983
- Eye Safety Designed to Meet Laser Class1, Compliant with IEC60825-1
- Compliant with CPRI/Interface OBSAI

Applications:

- GSM digital fiber repeater
- Gigabit Ethernet
- Fiber Channel
- WDM Application

Specification:

- Electrical and Optical Characteristics: (Condition: $\mathrm{T}_{\mathrm{a}}=\mathbf{T}_{\text {OP }}$)

Parameter	Symbol	Min.	Typical	Max.	Unit
Transmitter Differential Input Volt	+/-TX_DAT	200		2400	mV p-p
Supply Current	I		13	180	mA
Tx_Disable Input Vltage - Low	V	0		0.8	V
Tx_Disable Input Vlagage - High	V	2.0		Vcc	V
Tx_Fault Output Vltage - Low	V	0		0.8	V
Tx_Fault Output Voltage - High	V	2.0		Vcc	V
Receiver Differential Output Volt	+/-RX_DAT	600		1400	mV p-p
Rx_LOS Output Vbltage- Low	V	0		0.8	V
Rx_LOS Output Voltage- High	V	2.0		Vcc	V

Transmitter Section (LWFTR-3512L-10):

Parameter	Symbol	Min.	Typical	Max.	Uni
Data Rate	B	-	1250	-	Mb / s
Centre Wavelength	c	1270	1310	1355	nm
Output Spectral Width	(RMS)	-	-	4	nm
Average Output Power	P_{o}	-9.0	-	-	dB
Extinction Ratio	EXT	9	-	-	dB
Data Input Voltage-High	$\mathrm{V}_{\mathrm{IHS}}$	$\mathrm{V}_{\mathrm{cc}}-1.16$	-	$\mathrm{V}_{\mathrm{cc}}-0.89$	V

Proprietary and Confidential, Do Not Copy or Distribute

Data Input Voltage -Low	$\mathrm{V}_{\text {ILS }}$	$\mathrm{V}_{\mathrm{cc}}-1.82$	-	$\mathrm{V}_{\text {cc }} 1.48$	V
Supply Current	$\mathrm{I}_{\text {CC }}$	-	9	1	mA
Output Optical Eye	Compliant with IEEE802.3Z				
Receiver Section (LWFTR-3512L-10):					
Parameter	Symbol	Min.	Typical	Max.	Unit
Receive Sensitivity	$\mathrm{P}_{\text {min }}$	-	-	-	dBm
Maximum Input Power	$\mathrm{P}_{\mathrm{MAX}}$	-	-	-	dBm
LOS De-Assert	LOSo	-	-	-	dBm
LOS Assert	LOSA	-	-	-	dBm
Hysteresis	-	-	3	-	dBm
Output High Voltage	V_{OH}	$\mathrm{V}_{\mathrm{cc}}-1.03$	-	$\mathrm{V}_{\mathrm{cc}}-0.89$	V
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{cc}}-1.82$	-	$\mathrm{V}_{\mathrm{cc}}-1.63$	V
Operating Wavelength	c	1480	1550	1580	nm
Supply Current	I_{CC}	-	8	1	mA

Transmitter Section (LWFTR-5312L-10):

Parameter	Symbol	Min.	Typical	Max.	Unit
Data Rate	B	-	1250	-	Mb/s
Centre Wavelength	c	1480	1550	1580	nm
Output Spectral Width	(-20dB)	-		1	nm
Average Output Power	P_{0}	-	-	-	dBm
Extinction Ratio	EXT	9	-	-	dB
Data Input Voltage-High	$\mathrm{V}_{\text {IHS }}$	$\mathrm{V}_{\mathrm{cc}}-1.16$	-	$\mathrm{V}_{\text {cc-0 }} 0.89$	V
Data Input Voltage -Low	$\mathrm{V}_{\text {ILS }}$	$\mathrm{V}_{\mathrm{cc}}-1.82$	-	$\mathrm{V}_{\mathrm{cc}}-1.48$	V
Supply Current	I_{CC}	-	9	1	mA
Output Optical Eye	Compliant with IEEE802.3Z				
Receiver Section (LWFTR-5312L-10):					
Parameter	Symbol	Min.	Typical	Max.	Unit
Receive Sensitivity	$\mathrm{P}_{\text {min }}$	-	-	-	dBm
Maximum Input Power	$\mathrm{P}_{\text {MAX }}$	-	-	-	dBm
LOS De-Assert	LOSD	-	-	-	dBm
LOS Assert	LOSA	-	-	-	dBm
Hysteresis	-	-	3	-	dBm
Output High Voltage	V_{OH}	$\mathrm{V}_{\mathrm{cc}}-1.03$	-	$\mathrm{V}_{\text {cc-0 }}$-0.89	V
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{cc}}-1.82$	-	$\mathrm{V}_{\mathrm{cc}}-1.63$	

SHENZHEN LIGHTWIT PHOTONICS CO., LTD.

Bi-Di SFP 1.25Gb/s Optical Transceiver

Operating Wavelength	c	1260	1310	1360	nm
Supply Current	I_{CC}	-	80	110	mA

- Absolute Maximum Ratings:

Parameter	Symbol	M	M	Unit
Storage Temperature	T	-	+	
Operating Temperature	T	-	+	
Input Voltage	T	0	+	V

- Recommended Operating Environment:

Parameter	Symbol	Min.	Typical	Max.	Unit
Supply Vltage	V_{CC}	+3.1	+	+3.5	V
Operating Temperature	T_{OP}	-40	-	+80	

- Timing Characteristics:

Parameter	Symbol	Min.	Typical	Max.	Unit
TX_DISABLE Assert Time	t_off		3	10	usec
TX_DISABLE Negate Time	t_on		0.5	1	msec
Time to initialize include reset of TX_FAULT	t_int		30	300	msec
TX_FAULT from fault to assertion	t_fault		20	100	usec
TX_DISBEL time to start reset	t_reset	10			usec
Receiver Loss of Signal Assert Time (off to On)	TA $^{\text {A }}$ RX_LOS			100	usec
Receiver Loss of Signal Assert Time (on to off)	T $_{\mathrm{d}, \mathrm{RX} \text { R_LOS }}$			100	usec

SHENZHEN LIGHTWIT PHOTONICS CO., LTD.

Block Diagram of Transceiver:

Pin Assignment:

Pin out of Connector Block on Host Board
Proprietary and Confidential, Do Not Copy or Distribute

SHENZHEN LIGHTWIT PHOTONICS CO., LTD.

Pin Description:

Pin No.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2
4	MOD-DEF2	Module Definition 2	3	Note 3
5	MOD-DEF1	Module Definition 1	3	Note 3
6	MOD-DEF0	Module Definition 0	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VeeR	Receiver Ground	1	
15	VeeR	Receiver Power	2	
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	

Notes:

1. TX Fault is an open collector output, which should be pulled up with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor on the host board to a voltage between 2.0 V and $\mathrm{Vcc}+0.3 \mathrm{~V}$. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8 V .
2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor. Its states are:

Low ($0 \sim 0.8 \mathrm{~V}$): Transmitter on
($>0.8 \mathrm{~V},<2.0 \mathrm{~V}$): Undefined
High (2.0~3.465V): Transmitter Disabled
Open: Transmitter Disabled

SHENZHEN LIGHTWIT PHOTONICS CO., LTD.

3. MOD-DEF $0,1,2$ are the module definition pins. They should be pulled up with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

MOD-DEF 0 is grounded by the module to indicate that the module is present
MOD-DEF 1 is the clock line of two wire serial interface for serial ID
MOD-DEF 2 is the data line of two wire serial interface for serial ID
4. LOS is an open collector output, which should be pulled up with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor on the host board to a voltage between 2.0 V and $\mathrm{Vcc}+0.3 \mathrm{~V}$. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8 V .
5. These are the differential receiver output. They are internally AC-coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES.
6. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differentia

Serial ID Memory Contents:

Data Address	Length (Byte)	Name of Length	Description and Contents
Base ID Fields			
0	1	Identifier	Type of Serial transceiver (03h=SFP)
1	1	Reserved	Extended identifier of type serial transceiver (04h)
2	1	Connector	Code of optical connector type (07=LC)
$3-10$	8	Transceiver	Gigabit Ethernet 1000Base-LX \& Fiber Channel
11	1	Encoding	8B10B (01h)
12	1	BR,Nominal	Nominal baud rate, unit of 100Mbps
$13-14$	2	Reserved	(0000h)
15	1	Length(9um)	Link length supported for 9/125um fiber, units of 100m
16	1	Length(50um)	Link length supported for 50/125um fiber, units of 10m
17	1	Length(62.5um)	Link length supported for 62.5/125um fiber, units of 10m
18	1	Length(Copper)	Link length supported for copper, units of meters
19	1	Reserved	

$20-35$	16	Vendor Name	SFP vendor name: FUTURE
36	1	Reserved	
$37-39$	3	Vendor OUI	SFP transceiver vendor OUI ID
$40-55$	16	Vendor PN	Part Number: "LWFTR-xxxxxx" (ASCII)
$56-59$	4	Vendor rev	Revision level for part number
$60-62$	3	Reserved	
63	1	CCID	Least significant byte of sum of data in address 0-62
Extended ID Fields			
$64-65$	2	Option	Indicates which optical SFP signals are implemented (001Ah = LOS, TX FAULT, TX DISABLE all supported)
66	1	BR, max	Upper bit rate margin, units of \%
67	1	BR, min	Lower bit rate margin, units of \%
$68-83$	16	Vendor SN	Serial number (ASCII)
$84-91$	8	Date code	Future's Manufacturing date code
$92-94$	3	Reserved	

SHENZHEN LIGHTWIT PHOTONICS CO., LTD.

Bi-Di SFP 1.25Gb/s Optical Transceiver

95	1	CCEX	Check code for the extended ID Fields (addresses 64 to 94)
Vendor Specific ID Fields			
$96-127$	32	Readable	Future specific date, read only

Mechanical Dimensions:

SHENZHEN LIGHTWIT PHOTONICS CO., LTD.

Recommended Circuit:

Note A: Circuit assumes open emitter output
Note B: Circuit assumes high impedance internal bias aVcc-1.3V

SHENZHEN LIGHTWIT PHOTONICS CO., LTD.

Ordering Information

Note: 1.The "Distance" bit may be omitted when it is "10".
2.The "Temperature" bit may be omitted when it is standard temp.

Part No.	Product Description
LWFTR-3512L-10	$1310 \mathrm{~nm} / 1550 \mathrm{~nm}, 1.25 \mathrm{Gbps}, 10 \mathrm{~km}$, SFP with Spring-Latch, $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
LWFTR-5312L-10	$1550 \mathrm{~nm} / 1310 \mathrm{~nm}, 1 . .25 \mathrm{Gbps}, 10 \mathrm{~km}$, SFP with Spring-Latch, $40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
LWFTR-3512L-20	$1310 \mathrm{~nm} / 1550 \mathrm{~nm}, 1.25 \mathrm{Gbps}, 20 \mathrm{~km}$, SFP with Spring-Latch, $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
LWFTR-5312L-20	$1550 \mathrm{~nm} / 1310 \mathrm{~nm}, 1.25 \mathrm{Gbps}, 20 \mathrm{~km}$, SFP with Spring-Latch, $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
LWFTR-3412L-10	$1310 \mathrm{~nm} / 1490 \mathrm{~nm}, 1.25 \mathrm{Gbps}, 10 \mathrm{~km}$, SFP with Spring-Latch, $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
LWFTR-4312L-10	$1490 \mathrm{~nm} / 1310 \mathrm{~nm}, 1.25 \mathrm{Gbps}, 10 \mathrm{~km}$, SFP with Spring-Latch,- $40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
LWFTR-3412L-20	$1310 \mathrm{~nm} / 1490 \mathrm{~nm}, 1.25 \mathrm{Gbps}, 20 \mathrm{~km}$, SFP with Spring-Latch, $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
LWFTR-4312L-20	$1490 \mathrm{~nm} / 1310 \mathrm{~nm}, 1.25 \mathrm{Gbps}, 20 \mathrm{~km}$, SFP with Spring-Latch, $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
LWFTR-4512L-10	$1490 \mathrm{~nm} / 1550 \mathrm{~nm}, 1.25 \mathrm{Gbps}, 10 \mathrm{~km}$, SFP with Spring-Latch, $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
LWFTR-5412L-10	$1550 \mathrm{~nm} / 1490 \mathrm{~nm}, 1.25 \mathrm{Gbps}, 10 \mathrm{~km}$, SFP with Spring-Latch, $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
LWFTR-4512L-20	$1490 \mathrm{~nm} / 1550 \mathrm{~nm}, 1.25 \mathrm{Gbps}, 20 \mathrm{~km}$, SFP with Spring-Latch, $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
LWFTR-5412L-20	$1550 \mathrm{~nm} / 1490 \mathrm{~nm}, 1.25 \mathrm{Gbps}, 20 \mathrm{~km}$, SFP with Spring-Latch, $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$

Related Documents

For further information, please refer to the following documents:
■ Future Spring-Latch SFP Installation Guide

- Future SFP Application Notes

■ SFP Multi-Source Agreement (MSA)

