1.25Gbps SFP Transceiver

(For 40km,60km,80km,100km transmission)

Features

- ◆ Dual data-rate of 1.25Gbps/1.0625Gbps operation
- ◆ 1310nm FP laser and PIN photodetector
- ◆ Standard serial ID information Compatible with SFP MSA
- ◆ SFP MSA package with duplex LC connector
- ◆ With Spring-Latch for high density application
- ◆ Very low EMI and excellent ESD protection
- ♦ +3.3V single power supply
- ◆ Operating case temperature:

Standard:0 to +70°C Industrial: -40 to +85°C

Applications

- ◆ Switch to Switch interface
- ◆ Switched backplane application
- ◆ Router/Server interface
- ◆ Other optical transmission systems

Standard

- ◆ Compatible with SFP MSA
- ◆ Compatible with IEEE 802.3z
- ◆ Compatible with ANSI specifications for Fiber Channel
- ◆ Compatible with FCC 47 CFR Part 15, Class B
- ◆ Compatible with FDA 21 CFR 1040.10 and 1040.11, Class I
- ◆ Compatible with Telcordia GR-468-CORE

Description

The SFP transceiver is high performance, cost effective module supporting dual data-rate of 1.25 Gbps / 1.0625 Gbps and from 10 km to 20 km transmission distance with SMF.

The transceiver consists of two sections: The transmitter section incorporates a FP laser. And the receiver section consists of a PIN photodiode integrated with a trans-impedance preamplifier (TIA). All modules satisfy class I laser safety requirements.

The optical output can be disabled by a TTL logic high-level input of Tx Disable. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver.

The standard serial ID information compatible with SFP MSA describes the transceiver's capabilities, standard interfaces, manufacturer and other information. The host equipment can access this information via the 2-wire serial CMOS EEPROM protocol. For further information, please refer to SFP Multi-Source Agreement (MSA).

The SFP transceivers are compatible with RoHS.

Regulatory Compliance

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Future_{TM} regulatory specification and safety guidelines, or contact with Future. In shenzhen of china sales office listed at the end of the documentation.

Table 1 - Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883E	Class 1(>500 V)
(ESD) to the Electrical Pins	Method 3015.7	
Electrostatic Discharge	IEC 61000-4-2	Compatible with standards
(ESD)to the Duplex LC	GR-1089-CORE	
Receptacle		
Electromagnetic	FCC Part 15 Class B	Compatible with standards
Interference (EMI)	EN55022 Class B (CISPR22B)	
	VCCI Class B	
Immunity	IEC 61000-4-3	Compatible with standards
Laser Eye Safety	FDA 21CFR 1040.10 and	Compatible with Class I laser
	1040.11	product.
	EN60950, EN (IEC) 60825-1,2	
Component Recognition	UL and CSA	UL file E223705

1.25Gbps SFP Transceiver

RoHS	2002/95/EC 4.1&4.2	Compliant with standards

Absolute Maximum Ratings

Stress in excess of the maximum absolute ratings can cause permanent damage to the module.

Table 2 - Absolute Maximum Ratings

- table = 7 the estate maximum statinge					
Parameter	Symbol	Min	Max.	Unit	
Storage Temperature	Ts	-40	+85	°C	
Supply Voltage	Vcc	-0.5	3.6	V	
Operating Relative Humidity	-	5	95	%	

Recommended Operating Conditions

Table 3- Recommended Operating Conditions

Parameter		Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature		Tc	0		+70	°C
Power Supply Voltage		Vcc	3.13		3.47	V
Power Supply	y Current	Icc		190	300	mA
Date Rate	Gigabit Ethernet			1.25		Gbps
	Fibre Channel			1.0625		1

LWFTR-5012L-80/ LWFTR-5012L-80Li (1550nm DFB and PIN, 80km)

Table 4 - Optical and Electrical Characteristics

Parameter	cai allu Electi	Symbol	Min.	Typical	Max.	unit	notes
	Transmitter						
Centre Wavele	ength	λс	1480	1550	1580	nm	
Average Outpo	ut Power	Pout	0		+5	dBm	1
Pout@TXDisa	bleAsserted	Pout			-45	dBm	1
Spectral Width	(RMS)	σ		2	4	nm	
Extinction Rati	0	ER	9			dB	
Rise/Fall Time	(20%~80%)	tr /tf			0.26	ns	2
Total Jitter	1.25G	TJ			0.431	UI	3
	1.0625G				0.43		
Deterministic	1.25G	Dι			0.2	UI	3
Jitter	1.0625G				0.21		
Output Optical	Output Optical Eye		3z and AN	and ANSI Fibre Channel Compatible			4
Differential Da Swing	ta Input	Vin	500		2400	mV	5
Differential Inp Impedance	ut	Zın	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	>	
	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc+0.3	V	
	Normal		0		0.8	V	
	Receiver						

1.25Gbps SFP Transceiver

Centre Wavel	ength	λc	1100	1550	1600	nm	
Receiver Sens	sitivity				-28	dBm	6
Receiver Ove	rload		-3			dBm	6
Return Loss			12			dB	
LOS De-Asse	rt	LOSD			-25	dBm	
LOS Assert		LOSA	-35			dBm	
LOS Hysteres	LOS Hysteresis		1		4	dB	
Total Jitter	1.25G	ΤJ			0.749	UI	3
	1.0625G				0.61		
Deterministic	1.25G	Dл			0.462	UI	3
Jitter	1.0625G				0.36		
Differential Data Output		Vout	370		2000	mV	5
Swing							
LOS	High		2.0		Vcc+0.3	V	
	Low		0		0.8	V	

Notes:

- 1. The optical power is launched into MMF.
- 2. Unfiltered, measured with a PRBS 2^7-1 test pattern @1.25Gbps
- 3. Meet the specified maximum output jitter requirements if the specified maximum input jitter is present.
 - 4. Measured with a PRBS 2^7-1 test pattern @1.25Gbps/1.0625Gbps.
 - 5. PECL logic, internally AC coupled.
- 6. Measured with a PRBS 2^7-1 test pattern @1.25Gbps, worst-case extinction ratio, BER ≤1×10-12.

EEPROM Information

The SFP SMA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 6 Table6 - EEPROM Serial ID Memory Contents (A0h)

Addr. Field Size Hex Description Name of Field (Bytes) 0 Identifier 03 SFP 1 MOD4 1 Ext.Identifier 04 1 Connector 07 LC 3—10 8 00 00 00 02 12 00 0D 01 Transmitter Code Transceiver 11 Encoding 01 8B10B 1 12 1 BR, nominal 1.25Gbps 0D13 Reserved 00 1 14 1 Length(9um)-km 50 80km 15 Length (9um) 64/C8/FF

1.25Gbps SFP Transceiver

16	1	Length (50um)	37	550m
17	1	Length (62.5um)	37	550m
18	1	Length (copper)	00	
19	1	Reserved	00	
20-35	16	Vendor name	46 49 42 45 52 58 4F 4E	"FUTURE INC. "
			20 49 4E 43 2E 20 20 20	(ASC II)
36	1	Reserved	00	
37-39	3	Vendor OUI	00 00 00	
40-55	16	Vendor PN	46 54 4D 2D 33 30 31 32	"LWFTR-5012L-xx"
			43 2D 53 4C xx xx 47 20	(ASC II)
56-59	4	Vendor rev	xx xx 20 20	ASC II ("31 30 20 20"
				means 1.0 revision)
60-61	2	Wavelength	06 0E	1550nm
62	1	Reserved	00	
63	1	CC BASE	XX	Check sum of bytes 0 - 62
64-65	2	Options	00 1A	LOS, TX_FAULT and TX_DISABLE
66	1	BR, max	00	_
67	1	BR, min	00	
68-83	16	Vendor SN	xx xx xx xx xx xx xx xx	ASC II
			xx xx xx xx 20 20 20 20	
84-91	8	Vendor date	xx xx xx xx xx xx 20 20	Year(2 byte), Month
		code		(2 byte), Day (2 byte)
92-94	3	Reserved	00 00 00	
95	1	CC EXT	XX	Check sum of bytes 64 - 94
96-255	160	Vendor specific		

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of SFP Multi-Source Agreement (MSA).

Recommended Host Board Power Supply Circuit

Figure 1 shows the recommended host board power supply circuit.

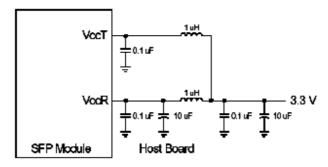
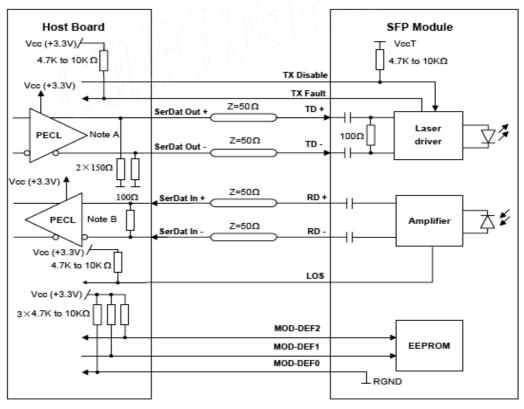



Figure 1, Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

Figure 2 shows the recommended interface circuit.

Note A: Circuit assumes open emitter output

Note B: Circuit assumes high impedance internal bias @Vcc-1.3V

Pin Definitions

Figure 3 below shows the pin numbering of SFP electrical interface. The pin functions are described in Table 7 with some accompanying notes.

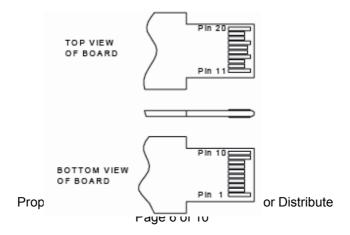


Figure 3, Pin View

Table 7– Pin Function Definitions

Pin No.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2
4	MOD-DEF2	Module Definition 2	3	Note 3
5	MOD-DEF1	Module Definition 1	3	Note 3
6	MOD-DEF0	Module Definition 0	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VeeR	Receiver Ground	1	
15	VeeR	Receiver Power	2	
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	

Notes:

1. TX Fault is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

1.25Gbps SFP Transceiver

2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0~0.8V): Transmitter on

(>0.8V, <2.0V): Undefined

High (2.0~3.465V): Transmitter Disabled

Open: Transmitter Disabled

3. MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

MOD-DEF 0 is grounded by the module to indicate that the module is present

MOD-DEF 1 is the clock line of two wire serial interface for serial ID

MOD-DEF 2 is the data line of two wire serial interface for serial ID

- 4. LOS is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.
- 5. These are the differential receiver output. They are internally AC-coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential

Mechanical Design Diagram

The mechanical design diagram is shown in Figure 4.

1.25Gbps SFP Transceiver

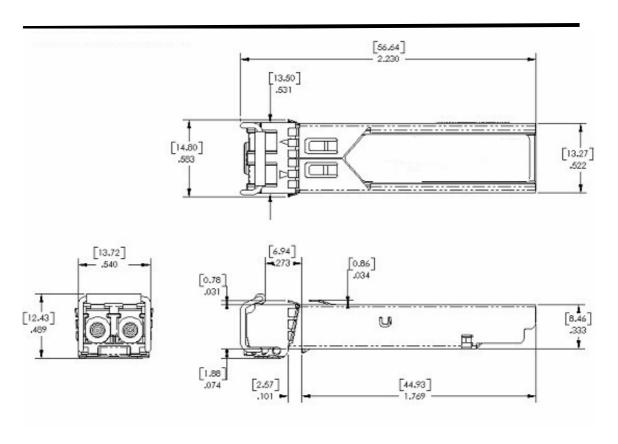
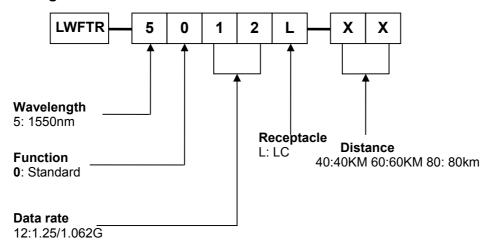



Figure 4, Mechanical Design Diagram of SFP with Spring-Latch

Ordering Information

1.25Gbps SFP Transceiver

Note: 1.The "Distance" bit may be omitted when it is "10".

2. The "Temperature" bit may be omitted when it is standard temp.

Part No.	Product Description
LWFTR-5012L-80	1550nm, 1.25Gbps, 80km, SFP with Spring-Latch, 0°C~+70°C

Related Documents

For further information, please refer to the following documents:

- Future Spring-Latch SFP Installation Guide
- Future SFP Application Notes
- SFP Multi-Source Agreement (MSA)